Minggu, 16 Februari 2020

Proses Analisis SEM (skripsi dan tesis)


Menurut Hair et al (1995) dalam Hartono (2006), ada 7 (tujuh) langkah yang harus dilakukan apabila menggunakan Structural Equation Modeling (SEM) yaitu:
1. Pengembangan model teoritis
Dalam langkah pengembangan model teoritis, hal yang harus dilakukan
adalah melakukan serangkaian eksplorasi ilmiah melalui telaah pustaka guna mendapatkan justifikasi atas model teoritis yang akan dikembangkan. SEM  digunakan bukan untuk menghasilkan sebuah model, tetapi digunakan untuk mengkonfirmasi model teoritis tersebut melalui data empirik.
2. Pengembangan diagram alur
Dalam langkah kedua ini, model teoritis yang telah dibangun pada tahap
pertama akan digambarkan dalam sebuah diagram alur, yang akan mempermudah untuk melihat hubungan kausalitas yang ingin diuji. Dalam diagram alur, hubungan antar konstruk akan dinyatakan melalui anak panah. Anak panah yang lurus menunjukkan sebuah hubungan kausal yang langsung antara satu konstruk lainnya. Sedangkan garis-garis lengkung antar konstruk dengan anak panah pada setiap ujungnya menunjukkan korelasi antara konstruk. Konstruk yang dibangun dalam diagram alur dapat dibedakan dalam dua kelompok, yaitu :
1) Konstruk eksogen (exogenous constructs), yang dikenal juga sebagai source variables atau independent variables yang akan diprediksi oleh variabel yang lain dalam model. Konstruk eksogen adalah konstruk yang dituju oleh garis dengan satu ujung panah.
2) Konstruk endogen (endogen constructs), yang merupakan faktor-faktor yang diprediksi oleh satu atau beberapa konstruk. Konstruk endogen dapat
memprediksi satu atau beberapa konstruk endogen lainnya, tetapi konstruk
eksogen hanya dapat berhubungan kausal dengan konstruk endogen.
3. Konversi diagram alur ke dalam persamaan
Persamaan yang didapat dari diagram alur yang dikonversi terdiri dari :
1) Persamaan struktural (structural equation) yang dirumuskan untuk
menyatakan hubungan kausalitas antar berbagai konstruk.
Variabel endogen = variabel eksogen + variabel endogen + error
2) Persamaan spesifikasi model pengukuran (measurement model), dimana harus
ditentukan variabel yang mengukur konstruk dan menentukan serangkaian
matriks yang menunjukkan korelasi antar konstruk atau variabel.
4. Memilih matriks input dan estimasi model
SEM menggunakan input data yang hanya menggunakan matriks
varians/kovarians atau matriks korelasi untuk keseluruhan estimasi yang dilakukan. Matriks kovarian digunakan karena SEM memiliki keunggulan dalam menyajikan perbandingan yang valid antara populasi yang berbeda atau sampel yang berbeda, yang tidak dapat disajikan oleh korelasi. Hair et.al (1996) menyarankan agar menggunakan matriks varians/kovarians pada saat pengujian teori sebab lebih memenuhi asumsi-asumsi metodologi dimana standar error menunjukkan angka yang lebih akurat dibanding menggunakan matriks korelasi.
5. Kemungkinan munculnya masalah identifikasi
Problem identifikasi pada prinsipnya adalah problem mengenai
ketidakmampuan dari model yang dikembangkan untuk menghasilkan estimasi yang
unik. Bila setiap kali estimasi dilakukan muncul problem identifikasi, maka
sebaiknya model dipertimbangkan ulang dengan mengembangkan lebih banyak
konstruk.
6. Evaluasi kriteria goodness of fit
Pada tahap ini dilakukan pengujian terhadap kesesuaian model melalui telaah
terhadap berbagai kriteria goodness of fit. Berikut ini beberapa indeks kesesuaian dan
cut off value untuk menguji apakah sebuah model dapat diterima atau ditolak menurut
Ferdinand (2000) :
1) Uji Chi-square, dimana model dipandang baik atau memuaskan bila nilai Chisquare nya rendah. Semakin kecil nilai chi-square semakin baik model itu dan
nilai signifikansi lebih besar dari cut off value (p>0,05).
2) RMSEA (The Root Mean Square Error of Approximation), yang
menunjukkan goodness of fit yang dapat diharapkan bila model diestimasi
dalam populasi (Hair et.al., 1995). Nilai RMSEA yang lebih kecil atau sama
dengan 0,08 merupakan indeks untuk dapat diterimanya model yang
menunjukkan sebuah close fit dari model itu berdasarkan degrees of freedom.
3) GFI (Goodness of Fit Index) adalah ukuran non statistikal yang mempunyai
rentang nilai antara 0 (poor fit) sampai dengan 1.0 (perfect fit). Nilai yang
tinggi dalam indeks ini menunjukkan sebuah "better fit".
4) AGFI (Adjusted Goodness of Fit Index), dimana tingkat penerimaan yang
direkomendasikan adalah bila AGFI mempunyai nilai sama dengan atau lebih
besar dari 0,90.
5) CMIN/DF adalah The Minimum Sample Discrepancy Function yang dibagi
dengan Degree of Freedom. Chi-square dibagi DF-nya disebut chi-square
relatif. Bila nilai chi-square relatif kurang dari 2.0 atau 3.0 adalah indikasi
dari acceptable fit antara model dan data.
6) TLI (Tucker Lewis Index), merupakan incremental index yang
membandingkan sebuah model yang diuji terhadap sebuah baseline model,
dimana sebuah model ≥ 0,95 dan nilai yang mendekati 1 menunjukkan a very
good fit.
7) CFI (Comparative Fit Index), dimana bila mendekati 1, mengindikasi tingkat
fit yang paling tinggi. Nilai yang direkomendasikan adalah CFI ≥ 0,947. Interpretasi dan modifikasi model
Tahap terakhir ini adalah menginterpretasikan model dan memodifikasi model
bagi model-model yang tidak memenuhi syarat pengujian yang dilakukan. Tujuan modifikasi adalah untuk melihat apakah modifikasi yang dilakukan dapat menurunkan nilai chi-square; seperti diketahui, semakin kecilnya angka chi-square menunjukkan semakin fit model tersebut dengan data yang ada.
Proses SEM tentu tidak bisa dilakukan secara manual selain karena
keterbatasan kemampuan manusia, juga karena kompleksitas model dan alat statistik  yang digunakan. Walaupun banya ahli yang sudah menyadari perlunya membuat model yang dapat menjelaskan banyak fenomena sosial dalam hubungan banyak variabel, namun mereka belum dapat menangani kompleksitas perhitungan matematisnya. Saat ini banyak software yang khusus digunakan untuk analisis model SEM, seperti LISREL, AMOS, EQS dan Mplus. Pada penelitian ini, peneliti menggunakan AMOS 18.0 sebagai alat analisisnya. Sebagai sebuah model persamaan struktur, AMOS telah sering digunakan dalam pemasaran dan penelitian manajemen strategik. Model kausal AMOS menunjukkan pengukuran dan masalah yang struktural dan digunakan untuk menganalisis dan menguji model hipotesis. AMOS sangat tepat untuk analisis seperti ini, karena kemampuannya untuk : (1) memperkirakan koefisien yang tidak diketahui dari persamaan linier struktural, (2) mengakomodasi model yang meliputi latent variabel, (3) mengakomodasi kesalahan pengukuran pada variabel dependen dan independen, (4) mengakomodasi peringatan yang timbal balik, simultan dan saling
ketergantungan

Tidak ada komentar: